Machine learning research with positive real-world impact.
Ambitious applied research, positive outcomes
Recent highlights
Our research is supported by access to massive datasets, close collaboration with world renowned academic faculty, and a uniquely scalable machine learning platform.
TMLR 2022 | Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
TMLR 2022 | Diagnosing and Fixing Manifold Overfitting in Deep Generative Models

Abstract
Likelihood-based, or explicit, deep generative models use neural networks to construct flexible high-dimensional densities. This formulation directly contradicts the manifold hypothesis, which states that observed data lies on a low-dimensional manifold embedded in high-dimensional ambient space. In this paper we investigate the pathologies of maximum-likelihood training in the presence of this dimensionality mismatch. We formally prove that degenerate optima are achieved wherein the manifold itself is learned but not the distribution on it, a phenomenon we call manifold overfitting. We propose a class of two-step procedures consisting of a dimensionality reduction step followed by maximum-likelihood density estimation, and prove that they recover the data-generating distribution in the nonparametric regime, thus avoiding manifold overfitting. We also show that these procedures enable density estimation on the manifolds learned by implicit models, such as generative adversarial networks, hence addressing a major shortcoming of these models. Several recently proposed methods are instances of our two-step procedures; we thus unify, extend, and theoretically justify a large class of models.
ICML 2022 | Bayesian Nonparametrics for Offline Skill Discovery
ICML 2022 | Bayesian Nonparametrics for Offline Skill Discovery

Abstract
Skills or low-level policies in reinforcement learning are temporally extended actions that can speed up learning and enable complex behaviours. Recent work in offline reinforcement learning and imitation learning has proposed several techniques for skill discovery from a set of expert trajectories. While these methods are promising, the number K of skills to discover is always a fixed hyperparameter, which requires either prior knowledge about the environment or an additional parameter search to tune it. We first propose a method for offline learning of options (a particular skill framework) exploiting advances in variational inference and continuous relaxations. We then highlight an unexplored connection between Bayesian nonparametrics and offline skill discovery, and show how to obtain a nonparametric version of our model. This version is tractable thanks to a carefully structured approximate posterior with a dynamically-changing number of options, removing the need to specify K. We also show how our nonparametric extension can be applied in other skill frameworks, and empirically demonstrate that our method can outperform state-of-the-art offline skill learning algorithms across a variety of environments.
CVPR 2022 | X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval
CVPR 2022 | X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval

Abstract
In text-video retrieval, the objective is to learn a crossmodal similarity function between a text and a video that ranks relevant text-video pairs higher than irrelevant pairs. However, videos inherently express a much wider gamut of information than texts. Instead, texts often capture subregions of entire videos and are most semantically similar to certain frames within videos. Therefore, for a given text, a retrieval model should focus on the text’s most semantically similar video sub-regions to make a more relevant comparison. Yet, most existing works aggregate entire videos without directly considering text. Common text-agnostic aggregations schemes include mean-pooling or self-attention over the frames, but these are likely to encode misleading visual information not described in the given text. To address this, we propose a cross-modal attention model called XPool that reasons between a text and the frames of a video. Our core mechanism is a scaled dot product attention for a text to attend to its most semantically similar frames. We then generate an aggregated video representation conditioned on the text’s attention weights over the frames. We evaluate our method on three benchmark datasets of MSRVTT, MSVD and LSMDC, achieving new state-of-the-art results by up to 12% in relative improvement in Recall@1. Our findings thereby highlight the importance of joint textvideo reasoning to extract important visual cues according to text. Full code and demo can be found at: layer6ailabs.github.io/xpool/.
Nature Scientific Reports | Federated learning and differential privacy for medical image analysis
Nature Scientific Reports | Federated learning and differential privacy for medical image analysis

Abstract
The artificial intelligence revolution has been spurred forward by the availability of large-scale datasets. In contrast, the paucity of large-scale medical datasets hinders the application of machine learning in healthcare. The lack of publicly available multi-centric and diverse datasets mainly stems from confidentiality and privacy concerns around sharing medical data. To demonstrate a feasible path forward in medical image imaging, we conduct a case study of applying a differentially private federated learning framework for analysis of histopathology images, the largest and perhaps most complex medical images. We study the effects of IID and non-IID distributions along with the number of healthcare providers, i.e., hospitals and clinics, and the individual dataset sizes, using The Cancer Genome Atlas (TCGA) dataset, a public repository, to simulate a distributed environment. We empirically compare the performance of private, distributed training to conventional training and demonstrate that distributed training can achieve similar performance with strong privacy guarantees. We also study the effect of different source domains for histopathology images by evaluating the performance using external validation. Our work indicates that differentially private federated learning is a viable and reliable framework for the collaborative development of machine learning models in medical image analysis.
RecSys 2021 | User Engagement Modeling with Deep Learning and Language Models
RecSys 2021 | User Engagement Modeling with Deep Learning and Language Models

Abstract
Twitter is one of the main information sharing platforms in the world with millions of tweets created daily. To ensure that users get relevant content in their feeds Twitter extensively leverages machine learning-based recommender systems. However, given the large volume of data, all production systems must be both memory and CPU efficient. In the 2021 ACM RecSys challenge Twitter simulates the production environment with a large dataset of almost 1 bilion user-tweet engagements that span a 4 week period. The goal is to accurately predict engagement type, and all models are subject to strict run-time constraints during inference. In this paper we present our approach to the 2021 ACM Recsys challenge. We use a hybrid pipeline and leverage gradient boosting, neural network classifiers and multi-lingual language models to maximize performance. Our approach achieves strong results placing 3’rd on the public leaderboard. We further explore the complexity of language model inference, and show that through distillation it can be possible to run such models in highly constrained production environments.
Our research areas include recommendation systems, computer vision, time series forecasting, and natural language processing.

Big vision, deep roots
The co-founders of Layer 6, Jordan Jacobs and Tomi Poutanen, are also founders of the Vector Institute for Artificial Intelligence, and we maintain multiple research initiatives with Vector faculty. Current and former scientific advisors include professors Raquel Urtasun, Sanja Fidler, Rich Zemel, David Duvenaud, Laura Rosella and Scott Sanner.
Meaningful partnerships
Originally founded in 2011, Layer 6 now forms the AI research lab of TD Bank Group. Layer 6 impacts the lives of 25 million customers, helping more people achieve their financial goals. Partnerships with TD Securities provides Layer 6 with market data for training algo trading systems.
Layer 6 embraces opportunities to collaborate with Toronto’s world-leading medical research community, offering deep learning solutions to transform healthcare delivery and improve health outcomes. We are the first to deploy deep learning models on health data covering large population.
Passion to learn, driven to succeed
Our team represents 18 different countries of birth and we care deeply about fostering an inclusive culture where we learn from each other and win together. We are united by our passion for deep learning and a desire to apply our skills to have an outsized and positive impact on the future.
Meet some of our team
Develop your career at Layer 6
We’re growing our team exclusively with people driven to be at the top of the game in machine learning.

In the news
-
Inside TD’s AI play: How Layer 6’s technology hopes to improve old-fashioned banking advice
Globe And Mail
Read articleon Globe And Mail -
Tomi Poutanen: Geoffrey Hinton's Turing Award celebrates a life devoted to ground-breaking AI research
TD Newsroom
Read articleon TD Newsroom -
Tomi Poutanen: Chief Artificial Intelligence Officers Enter the C-Suite
Wall Street Journal
Read articleon Wall Street Journal -
TD Bank’s ‘Layer 6’ to bring machine learning personalization to diabetes care
IT Business
Read articleon IT Business -
TD Advances Innovation in Canadian Healthcare
TD Bank Group
Read articleon TD Bank Group
-
Inside TD’s AI play: How Layer 6’s technology hopes to improve old-fashioned banking advice
Globe And Mail
Read articleon Globe And Mail -
Tomi Poutanen: Geoffrey Hinton's Turing Award celebrates a life devoted to ground-breaking AI research
TD Newsroom
Read articleon TD Newsroom -
Tomi Poutanen: Chief Artificial Intelligence Officers Enter the C-Suite
Wall Street Journal
Read articleon Wall Street Journal -
TD Bank’s ‘Layer 6’ to bring machine learning personalization to diabetes care
IT Business
Read articleon IT Business -
TD Advances Innovation in Canadian Healthcare
TD Bank Group
Read articleon TD Bank Group -
Jordan Jacobs, co-founder of Vector Institute on Canada as a global AI leader
IT Business
Read articleon IT Business -
Layer 6’s Jordan Jacobs: Canada needs to promote itself as an AI leader
BetaKit
Read articleon BetaKit -
U of T alumni and graduate students part of Layer 6 AI's win in global competition
U of T News
Read articleon U of T News -
Tomi Poutanen and Michael Rhodes discuss the future of artificial intelligence with Amanda Lang
TD Bank Group
Read articleon TD Bank Group -
Get Smart – Artificial intelligence is transforming business and life
Ivey Business School
Read articleon Ivey Business School -
How TD Bank plans to use artificial intelligence
BNN Bloomberg
Read articleon BNN Bloomberg