Machine learning research with positive real-world impact.
Ambitious applied research, positive outcomes
Recent highlights
Our research is supported by access to massive datasets, close collaboration with world renowned academic faculty, and a uniquely scalable machine learning platform.
TMLR 2024 | Deep Generative Models through the Lens of the Manifold Hypothesis: A Survey and New Connections
TMLR 2024 | Deep Generative Models through the Lens of the Manifold Hypothesis: A Survey and New Connections
Abstract
In recent years there has been increased interest in understanding the interplay between deep generative models (DGMs) and the manifold hypothesis. Research in this area focuses on understanding the reasons why commonly-used DGMs succeed or fail at learning distributions supported on unknown low-dimensional manifolds, as well as developing new models explicitly designed to account for manifold-supported data. This manifold lens provides both clarity as to why some DGMs (e.g. diffusion models and some generative adversarial networks) empirically surpass others (e.g. likelihood-based models such as variational autoencoders, normalizing flows, or energy-based models) at sample generation, and guidance for devising more performant DGMs. We carry out the first survey of DGMs viewed through this lens, making two novel contributions along the way. First, we formally establish that numerical instability of likelihoods in high ambient dimensions is unavoidable when modelling data with low intrinsic dimension. We then show that DGMs on learned representations of autoencoders can be interpreted as approximately minimizing Wasserstein distance: this result, which applies to latent diffusion models, helps justify their outstanding empirical results. The manifold lens provides a rich perspective from which to understand DGMs, which we aim to make more accessible and widespread.
TMLR 2024 | Augment then Smooth: Reconciling Differential Privacy with Certified Robustness
TMLR 2024 | Augment then Smooth: Reconciling Differential Privacy with Certified Robustness
Abstract
Machine learning models are susceptible to a variety of attacks that can erode trust, including attacks against the privacy of training data, and adversarial examples that jeopardize model accuracy. Differential privacy and certified robustness are effective frameworks for combating these two threats respectively, as they each provide future-proof guarantees. However, we show that standard differentially private model training is insufficient for providing strong certified robustness guarantees. Indeed, combining differential privacy and certified robustness in a single system is non-trivial, leading previous works to introduce complex training schemes that lack flexibility. In this work, we present DP-CERT, a simple and effective method that achieves both privacy and robustness guarantees simultaneously by integrating randomized smoothing into standard differentially private model training. Compared to the leading prior work, DP-CERT gives up to a 2.5× increase in certified accuracy for the same differential privacy guarantee on CIFAR10. Through in-depth per-sample metric analysis, we find that larger certifiable radii correlate with smaller local Lipschitz constants, and show that DP-CERT effectively reduces Lipschitz constants compared to other differentially private training methods.
DataCV Challenge 2nd Place | Classifier Guided Cluster Density Reduction for Dataset Selection
DataCV Challenge 2nd Place | Classifier Guided Cluster Density Reduction for Dataset Selection
Abstract
We address the challenge of selecting an optimal dataset from a source pool with annotations to enhance performance on a target dataset derived from a different source. This is important in scenarios where it is hard to afford on-the-fly dataset annotation and is also the theme of the second Visual Data Understanding (VDU) Challenge. Our solution the Classifier Guided Cluster Density Reduction (CCDR) framework operates in two stages. Initially we employ a filtering technique to identify images that align with the target dataset’s distribution. Subsequently we implement a graph-based cluster density reduction method steered by a classifier that approximates the distance between the target distribution and source distribution. This classifier is trained to distinguish between images that resemble the target dataset and those that do not facilitating the pruning process shown in Figure 1. Our approach maintains a balance between selecting pertinent images that match the target distribution and eliminating redundant ones that do not contribute to the enhancement of the detection model. We demonstrate the superiority of our method over various baselines in object detection tasks particularly in optimizing the training set distribution on the region100 dataset.
ICML 2024 | Conformal Prediction Sets Improve Human Decision Making
ICML 2024 | Conformal Prediction Sets Improve Human Decision Making
Abstract
In response to everyday queries, humans explicitly signal uncertainty and offer alternative answers when they are unsure. Machine learning models that output calibrated prediction sets through conformal prediction mimic this human behaviour; larger sets signal greater uncertainty while providing alternatives. In this work, we study the usefulness of conformal prediction sets as an aid for human decision making by conducting a pre-registered randomized controlled trial with conformal prediction sets provided to human subjects. With statistical significance, we find that when humans are given conformal prediction sets their accuracy on tasks improves compared to fixed-size prediction sets with the same coverage guarantee. The results show that quantifying model uncertainty with conformal prediction is helpful for human-in-the-loop decision making and human-AI teams.
ICML 2024 | A Geometric Explanation of the Likelihood OOD Detection Paradox
ICML 2024 | A Geometric Explanation of the Likelihood OOD Detection Paradox
Abstract
Likelihood-based deep generative models (DGMs) commonly exhibit a puzzling behaviour: when trained on a relatively complex dataset, they assign higher likelihood values to out-of-distribution (OOD) data from simpler sources. Adding to the mystery, OOD samples are never generated by these DGMs despite having higher likelihoods. This two-pronged paradox has yet to be conclusively explained, making likelihood-based OOD detection unreliable. Our primary observation is that high-likelihood regions will not be generated if they contain minimal probability mass. We demonstrate how this seeming contradiction of large densities yet low probability mass can occur around data confined to low-dimensional manifolds. We also show that this scenario can be identified through local intrinsic dimension (LID) estimation, and propose a method for OOD detection which pairs the likelihoods and LID estimates obtained from a pre-trained DGM. Our method can be applied to normalizing flows and score-based diffusion models, and obtains results which match or surpass state-of-the-art OOD detection benchmarks using the same DGM backbones.
Our research areas include recommendation systems, computer vision, time series forecasting, and natural language processing.
Big vision, deep roots
The co-founders of Layer 6, Jordan Jacobs and Tomi Poutanen, are also founders of the Vector Institute for Artificial Intelligence, and we maintain multiple research initiatives with Vector faculty. Current and former scientific advisors include professors Raquel Urtasun, Sanja Fidler, Rich Zemel, David Duvenaud, Laura Rosella and Scott Sanner.
Meaningful partnerships
Originally founded in 2011, Layer 6 now forms the AI research lab of TD Bank Group. Layer 6 impacts the lives of 25 million customers, helping more people achieve their financial goals. Partnerships with TD Securities provides Layer 6 with market data for training algo trading systems.
Layer 6 embraces opportunities to collaborate with Toronto’s world-leading medical research community, offering deep learning solutions to transform healthcare delivery and improve health outcomes. We are the first to deploy deep learning models on health data covering large population.
Passion to learn, driven to succeed
Our team represents 18 different countries of birth and we care deeply about fostering an inclusive culture where we learn from each other and win together. We are united by our passion for deep learning and a desire to apply our skills to have an outsized and positive impact on the future.
Meet some of our team
Develop your career at Layer 6
We’re growing our team exclusively with people driven to be at the top of the game in machine learning.
In the news
-
Inside TD’s AI play: How Layer 6’s technology hopes to improve old-fashioned banking advice
Globe And Mail
Read articleon Globe And Mail -
Tomi Poutanen: Geoffrey Hinton's Turing Award celebrates a life devoted to ground-breaking AI research
TD Newsroom
Read articleon TD Newsroom -
Tomi Poutanen: Chief Artificial Intelligence Officers Enter the C-Suite
Wall Street Journal
Read articleon Wall Street Journal -
TD Bank’s ‘Layer 6’ to bring machine learning personalization to diabetes care
IT Business
Read articleon IT Business -
TD Advances Innovation in Canadian Healthcare
TD Bank Group
Read articleon TD Bank Group
-
Inside TD’s AI play: How Layer 6’s technology hopes to improve old-fashioned banking advice
Globe And Mail
Read articleon Globe And Mail -
Tomi Poutanen: Geoffrey Hinton's Turing Award celebrates a life devoted to ground-breaking AI research
TD Newsroom
Read articleon TD Newsroom -
Tomi Poutanen: Chief Artificial Intelligence Officers Enter the C-Suite
Wall Street Journal
Read articleon Wall Street Journal -
TD Bank’s ‘Layer 6’ to bring machine learning personalization to diabetes care
IT Business
Read articleon IT Business -
TD Advances Innovation in Canadian Healthcare
TD Bank Group
Read articleon TD Bank Group -
Jordan Jacobs, co-founder of Vector Institute on Canada as a global AI leader
IT Business
Read articleon IT Business -
Layer 6’s Jordan Jacobs: Canada needs to promote itself as an AI leader
BetaKit
Read articleon BetaKit -
U of T alumni and graduate students part of Layer 6 AI's win in global competition
U of T News
Read articleon U of T News -
Tomi Poutanen and Michael Rhodes discuss the future of artificial intelligence with Amanda Lang
TD Bank Group
Read articleon TD Bank Group -
Get Smart – Artificial intelligence is transforming business and life
Ivey Business School
Read articleon Ivey Business School -
How TD Bank plans to use artificial intelligence
BNN Bloomberg
Read articleon BNN Bloomberg